Bile and unsaturated fatty acids inhibit the binding of cholera toxin and Escherichia coli heat-labile enterotoxin to GM1 receptor.
نویسندگان
چکیده
Cholera toxin (CT) is an archetypal bacterial toxin that binds with a high affinity to the receptor ganglioside GM1 on the intestinal epithelial surface and that causes the severe watery diarrhea characteristic of the disease cholera. Blockage of the interaction of CT with the GM1 receptor is an attractive approach for therapeutic intervention. We report here that crude bile prevents the interaction of CT with GM1 and reduces CT-mediated fluid accumulation in the rabbit intestine. The unsaturated fatty acids detected in crude bile, arachidonic, linoleic, and oleic acids, were found to be the most effective. Crude bile and the unsaturated fatty acids interacted with CT but not GM1 to prevent CT-GM1 binding. Neither crude bile nor the unsaturated fatty acids had any effect on the subunit structure of CT. The binding of CT to unsaturated fatty acids resulted in a shift of the apparent pI of CT from 6.8 to 8.2 and a marked decrease in intrinsic fluorescence. The Kd was calculated from fluorescence quenching assays. It was demonstrated by the rabbit ileal loop model that practically no fluid accumulated in the intestinal loops when CT was administered together with inhibitory concentrations of linoleic acid. The bile present in the intestine was sufficient to inhibit the activity of up to 300 ng CT. Bile and unsaturated fatty acids also inhibited the binding of Escherichia coli heat-labile enterotoxin (LT) to GM1, and no fluid accumulation was observed in rabbit ileal loops when LT was administered together with linoleic acid.
منابع مشابه
Gangliosides sensitize unresponsive fibroblasts to Escherichia coli heat-labile enterotoxin.
Chemically transformed mouse fibroblasts did not raise their cyclic AMP level in response to Escherichia coli heat-labile enterotoxin. These fibroblasts did, however, incorporate exogenous mono-, di-, and trisialogangliosides. After the uptake of monosialoganglioside galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosylceramide (GM1), the cells responded to E. coli heat-labi...
متن کاملHeat-Labile Enterotoxin: Beyond GM1 Binding
Enterotoxigenic Escherichia coli (ETEC) is a significant source of morbidity and mortality worldwide. One major virulence factor released by ETEC is the heat-labile enterotoxin LT, which is structurally and functionally similar to cholera toxin. LT consists of five B subunits carrying a single catalytically active A subunit. LTB binds the monosialoganglioside G(M1), the toxin's host receptor, b...
متن کاملInhibition of Escherichia coli heat-labile enterotoxin by neoglycoprotein and anti-lectin antibodies which mimic GM1 receptor.
Escherichia coli producing heat-labile enterotoxin is responsible for numerous cases of diarrhea worldwide, leading to considerable morbidity and mortality. The B subunits of this toxin are responsible for the binding to the receptor, the complex ganglioside GM1 which has galactose as its terminal sugar. In this study we showed that analogs of galactose (gal) and N-acetylgalactosamine (GalNAc) ...
متن کاملCharacterization of the receptor for cholera toxin and Escherichia coli heat-labile toxin in rabbit intestinal brush borders.
125I-labelled heat-labile toxin (from Escherichia coli) and 125I-labelled cholera toxin bound to immobilized ganglioside GM1 and Balb/c 3T3 cell membranes with identical specificities, i.e. each toxin inhibited binding of the other. Binding of both toxins to Balb/c 3T3 cell membranes was saturable, with 50% of maximal binding occurring at 0.3 nM for cholera toxin and 1.1 nM for heat-labile toxi...
متن کاملBinding of Vibrio cholera Toxin and the Heat - labile Enterotoxin of Escherichia coli to GM 1 , Derivatives of GM 1 , and Nonlipid Oligosaccharide
Vibrio cholera toxin and the heat-labile enterotoxin of Escherichia coli have been shown to differ somewhat in their ligand specificity and in the antigenicity of their binding sites. Therefore, the components of the oligosaccharide portion of GMl bound by cholera toxin and the heat-labile enterotoxin of E. coli were identified by determining the concentration of GMl, derivatives of GMl, oligos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 52 1 شماره
صفحات -
تاریخ انتشار 2008